
Bandwidth Performance Analysis of
IPC Mechanisms

Akira Kawata

IPC (Inter Process Communication) Mechanisms on Linux

● TCP via localhost
● Unix Domain Socket
● PIPE (See man 2 pipe)
● FIFO (named pipe. See man 3 mkfifo)
● POSIX message queue (See man 3 mq_open)
● mmap (See MAP_SHARED section in man 2 mmap)
● POSIX shared memory (See man 3 shm_open)

2

Dissatisfaction with Existing Benchmarks

● lmbench
○ apt で入るパッケージがうまく動かない pull/32
○ 一部の測定結果がおかしい

● perf bench
○ memcpy の帯域しか計れない

● iperf3
○ TCP の帯域しか計れない

● そもそも自分で一回使ってみないと使える気持ちにならない

3

akbench

$ git clone https://github.com/akawashiro/akbench.git
$ cd akbench
$ cmake -S . -B build -D CMAKE_CXX_COMPILER=clang++
$ cmake --build build
$./build/akbench/akbench bandwidth_all

4

● 作りました
○ https://github.com/akawashiro/akbench

Bandwidth results on my computer

$./build/akbench/akbench bandwidth_all
bandwidth_memcpy: 18.098 ± 0.030 GiByte/sec
bandwidth_memcpy_mt (1 threads): 18.141 ± 0.368 GiByte/sec
bandwidth_memcpy_mt (2 threads): 18.649 ± 0.217 GiByte/sec
bandwidth_memcpy_mt (3 threads): 19.022 ± 0.515 GiByte/sec
bandwidth_memcpy_mt (4 threads): 18.641 ± 0.381 GiByte/sec
bandwidth_tcp: 5.779 ± 0.424 GiByte/sec
bandwidth_uds: 7.181 ± 0.212 GiByte/sec
bandwidth_pipe: 2.208 ± 0.035 GiByte/sec
bandwidth_fifo: 2.204 ± 0.024 GiByte/sec
bandwidth_mq: 1.811 ± 0.015 GiByte/sec
bandwidth_mmap: 10.869 ± 0.268 GiByte/sec
bandwidth_shm: 10.726 ± 0.196 GiByte/sec

5

測定結果の妥当
性

6

ベンチマークソフトウェアを自分で実装するのは不安

● 測り方を間違えていても数値は出る
● この数字あってるの?
● いろいろ比較しました

7

perf mem bench memcpy

$ /usr/lib/linux-tools/6.8.0-85-generic/perf bench mem memcpy --size
$((1<<30))
Running 'mem/memcpy' benchmark:
function 'default' (Default memcpy() provided by glibc)
Copying 1073741824 bytes …
 18.756799 GB/sec
function 'x86-64-unrolled' (unrolled memcpy() in arch/x86/lib/memcpy_64.S)
Copying 1073741824 bytes …
 10.265465 GB/sec
function 'x86-64-movsq' (movsq-based memcpy() in arch/x86/lib/memcpy_64.S)
Copying 1073741824 bytes …
 18.771235 GB/sec

8

akbench で 18.0 GiByte/sec なのでまあまあ

iperf3

$ iperf3 -c localhost --format g -bytes 1g
Connecting to host localhost, port 5201
[5] local 127.0.0.1 port 59876 connected to 127.0.0.1 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 4.83 GBytes 4.82 GBytes/sec 0 6.56 MBytes
…
[5] 9.00-10.00 sec 5.35 GBytes 5.35 GBytes/sec 0 6.56 MBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 51.8 GBytes 5.18 GBytes/sec 0 sender
[5] 0.00-10.00 sec 51.8 GBytes 5.18 GBytes/sec receiver

9

akbench で 5.77 GiByte/sec なのでまあまあ

lmbench

$ cd benchmark_comparison
$./run_lmbench.sh
bw_mem cp: 11.11 GiB/s # <= この値なんか怪しい。低すぎる

bw_pipe: 3.31 GiB/s # <= これは妥当か?
bw_unix: 0.08 GiB/s # <= この値なんか怪しい。低すぎる

10

lmbench の値はちょっと信用ならない

測定結果の分析

11

[再掲] Bandwidth results on my computer

$./build/akbench/akbench bandwidth_all
bandwidth_memcpy: 18.098 ± 0.030 GiByte/sec
bandwidth_memcpy_mt (1 threads): 18.141 ± 0.368 GiByte/sec
bandwidth_memcpy_mt (2 threads): 18.649 ± 0.217 GiByte/sec
bandwidth_memcpy_mt (3 threads): 19.022 ± 0.515 GiByte/sec
bandwidth_memcpy_mt (4 threads): 18.641 ± 0.381 GiByte/sec
bandwidth_tcp: 5.779 ± 0.424 GiByte/sec
bandwidth_uds: 7.181 ± 0.212 GiByte/sec
bandwidth_pipe: 2.208 ± 0.035 GiByte/sec
bandwidth_fifo: 2.204 ± 0.024 GiByte/sec
bandwidth_mq: 1.811 ± 0.015 GiByte/sec
bandwidth_mmap: 10.869 ± 0.268 GiByte/sec
bandwidth_shm: 10.726 ± 0.196 GiByte/sec

12

13

Graph of bandwidth results on my computer

memcpy performance on my computer

● Memory spec
○ DDR4 / clock: 3200MHz / width: 64 bits
○ 25.6 GiByte/sec (= 3200 MHz * 64 bits)

● memcpy の帯域が 18 GiByte/sec
○ perf mem bench でも同じぐらい出た

● 70% ぐらい出てる?
○ 読み書きが同じメモリに対して行われているとすると

140 %ということになるが...
● マルチスレッドで memcpy の速度が改善する?

14

TCP vs UDS (Unix Domain Socket)

● UDS のほうが TCP のオーバーヘッドがない分速い
○ TCP が 5.7 GiByte/sec で UDS が 7.18 GiByte/sec

15

PIPE と FIFO

● たぶんこの二つは内部的な実装が同じ
○ man 3 mkfifo に named pipe とあるぐらいなので

16

POSIX message queue

● 計測した IPC mechanism の中でダントツに遅い
○ 優先度がつけられるらしい

● 使うんですか...これ?

17

mmap と shm

● プロセス間通信の中で最速
● mmap と shm はほとんど同じ性能が出る
● => MAP_SHARED と /dev/shm はおそらく内部的な実装が同じ

18

ベンチマークの実装

19

How akbench calculates bandwidth?

20

Sender

Prepare data

Receiver

Received all data

Barrier 1

Barrier 2
Send all data

t

Bandwidth
= (data size) / t

How akbench calculates bandwidth?

● 送信側で送り始めてから受信側で受信し終わるまでの時間を計測
● 送信側で送り始めた時間をバリアで同期
● ほんとは ping-pong で計ったほうがよさそう

21

How akbench synchronize two process?

22

Sender

Prepare data

Receiver

Received all data

Barrier 1

Barrier 2
Send all data

t

Bandwidth
= (data size) / t

How akbench synchronize two process?

● センス反転バリアを実装 (barrier.cc)
○ データ置き場: shared memory
○ 同期機構: セマフォ
○ std::atomic はプロセス間同期で利用できるかがわからず使っていない

■ C++ の規格にプロセスという概念がない
● 1 us ぐらいで同期できる

○ 帯域を計測するときはデータの送受信に 100ms ぐらいかかるようにし
て、同期のオーバーヘッドが影響が出ないようにしている

23

$./build/akbench/akbench latency_barrier
Barrier benchmark result: 1066.952 ± 342.502 ns

Latency Performance Analysis of
Inter Process/Thread Communication

Mechanisms

Akira Kawata

Latency results on my computer

$./build/akbench/akbench latency_all
latency_atomic: 30.603 ± 7.456 ns
latency_atomic_rel_acq: 28.425 ± 6.766 ns
latency_barrier: 1207.463 ± 501.146 ns
latency_condition_variable: 3154.424 ± 707.784 ns
latency_semaphore: 2962.199 ± 681.565 ns
latency_statfs: 1008.512 ± 225.512 ns
latency_fstatfs: 664.642 ± 148.630 ns
latency_getpid: 95.559 ± 21.436 ns

25

lmbench

$./run_lmbench.sh
…
lat_syscall null: 132.60 ns
lat_syscall read: 218.80 ns
lat_syscall write: 196.80 ns
lat_syscall stat: 824.30 ns
lat_syscall fstat: 316.10 ns
lat_syscall open: 1976.90 ns
lat_sem: 1220.70 ns

26

Latency of synchronization mechanisms

$./build/akbench/akbench latency_all
latency_atomic: 30.603 ± 7.456 ns
latency_atomic_rel_acq: 28.425 ± 6.766 ns
latency_barrier: 1207.463 ± 501.146 ns
latency_condition_variable: 3154.424 ± 707.784 ns
latency_semaphore: 2962.199 ± 681.565 ns

27

● 上二つは OS を経由しないので 100 倍ぐらい早い
● release acquire をちゃんとしても 2.5 ns ぐらいしか変わらない
● latency_condition_variable と latency_semaphore はなんかおかしい

○ 3 倍ぐらいの値が出ている

Latency of syscall

$./build/akbench/akbench latency_all
latency_statfs: 1008.512 ± 225.512 ns
latency_fstatfs: 664.642 ± 148.630 ns
latency_getpid: 95.559 ± 21.436 ns

28

● 一番軽い syscall 一回で 100 ns ぐらい
○ lmbench と比較しても妥当

